# Woodvale Secondary College # WA Exams Practice Paper B, 2016 ## Question/Answer Booklet | MATHEMATIC | S | |-------------|---| | APPLICATION | S | | UNITS 3 AND | 4 | Section One: Calculator-free | 3 AND 4 One: | | If require | ed by y<br>your st | our exa | aminatio<br>dentific | on admi<br>ation la | nistrato<br>pel in th | r, please<br>iis box | ,<br>_ | |-----------------|------------|-----------------------|--------------------|---------|----------------------|---------------------|-----------------------|----------------------|--------| | Student Number: | In figures | | | | | | | | | | | In words | | | | | | | | _ | | | Your name | 2 <del>-1/2-1-2</del> | | | | | | | | | owed for this s | | ve minute | ie. | | | | | | | # Time allowed for this section Reading time before commencing work: Working time for section: fifty minutes Materials required/recommended for this section To be provided by the supervisor This Question/Answer Booklet Formula Sheet To be provided by the candidate Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters Special items: nil # Important note to candidates No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor before reading any further. #### **APPLICATIONS UNITS 3 AND 4** #### 2 #### CALCULATOR-FREE # Structure of this paper | Section | Number of<br>questions<br>available | Number of<br>questions to<br>be answered | Working<br>time<br>(minutes) | Marks<br>available | Percentage of exam | |------------------------------------|-------------------------------------|------------------------------------------|------------------------------|--------------------|--------------------| | Section One:<br>Calculator-free | 7 | 7 | 50 | 51 | 35 | | Section Two:<br>Calculator-assumed | 11 | 11 | 100 | 98 | 65 | | | | | Total | 149 | 100 | # Instructions to candidates - The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules. - 2. Write your answers in this Question/Answer Booklet. - You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question. - Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer. - · Planning: If you use the spare pages for planning, indicate this clearly at the top of the - Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the page. - Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked. - It is recommended that you do not use pencil, except in diagrams. - The Formula Sheet is not to be handed in with your Question/Answer Booklet. | CAL | CUL | AT | OD | CD | EE | |-----|-------|------|-----|-----|----| | UML | . UUL | -A I | UK. | -rĸ | | **APPLICATIONS UNITS 3 AND 4** Section One: Calculator-free 35% (51 Marks) This section has seven (7) questions. Answer all questions. Write your answers in the spaces Working time for this section is 50 minutes. Question 1 (6 marks) A B C DThe adjacency matrix, M, for a graph with vertices A, B, C and D is $\begin{bmatrix} A & 0 & 0 & 1 & 1 \\ B & 0 & 1 & 1 & 0 \\ C & 1 & 1 & 0 & 2 \\ D & 1 & 0 & 2 & 0 \end{bmatrix}$ . Complete the graph for M in the space below. (3 marks) - The matrices $M^2$ and $M^3$ are $M^2 = \begin{bmatrix} 2 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \\ 2 & 1 & 6 & 1 \\ 2 & 2 & 1 & 5 \end{bmatrix}$ and $M^3 = \begin{bmatrix} 4 & 3 & 7 & 6 \\ 3 & 3 & 7 & 3 \\ 7 & 7 & 5 & 14 \\ 6 & 3 & 14 & 4 \end{bmatrix}$ . - State the number of walks from C to A of length one. (1 mark) State the number of walks from C to B of length two. (1 mark) State the number of walks from D to C of length three. (1 mark) See next page **APPLICATIONS UNITS 3 AND 4** CALCULATOR-FREE Question 2 (5 marks) A sequence of numbers is described by the recursive equation $T_{n+1} = T_n - 8$ , $T_4 = 35$ . Determine $T_6$ . (1 mark) Determine $T_{i}$ . (1 mark) State a rule for the $n^{th}$ term of this sequence. (2 marks) Determine $T_{1001}$ . (1 mark) (a) A simple connected graph is shown below. - (i) List all the edges in the connected graph below that are bridges. - (2 marks) - (ii) State the number of vertices in the graph that have an odd degree. - (1 mark) - (iii) The graph will have a semi-Eulerian trail if one more edge is added to it. Briefly explain what a semi-Eulerian trail is and state a suitable pair of vertices that must be joined with an edge for this to occur. (3 marks) (b) Show use of Euler's formula to determine the number of edges in a graph with four vertices and one face and sketch a planar graph with these properties that also has no vertices with an even degree. (2 marks) #### **APPLICATIONS UNITS 3 AND 4** 6 **CALCULATOR-FREE** #### Question 4 (8 marks) The weighted graph below shows the cost (in hundreds of dollars) to transport high-security items directly from one depot of a freight company to adjacent depots. (a) How many depots are shown on the graph? (1 mark) - (b) Between which two adjacent depots is the transport cost the highest and what is the cost? (2 marks) - (c) Determine the minimum cost of transporting a high-security item through from A to H, listing the route the item must take. (3 marks) (d) A driver leaves E, travels directly to F and then visits all the other depots before returning to E. Explain whether or not this walk could be a Hamiltonian cycle. (2 marks) #### **CALCULATOR-FREE** 7 **APPLICATIONS UNITS 3 AND 4** #### Question 5 (8 marks) The table below shows, to the nearest cent, the value of \$1 000 invested for one year at different interest rates and compounding periods. | | | | Annual in | terest rate | | | |------------------------|----------|----------|-----------|-------------|----------|----------| | Interest<br>Compounded | 1% | 2% | 3% | 4% | 5% | 6% | | Annually | 1 010.00 | 1 020.00 | 1 030.00 | 1 040.00 | 1 050.00 | 1 060.00 | | Half-Yearly | 1 010.03 | 1 020.10 | 1 030.23 | 1 040.40 | 1 050.63 | 1 060.90 | | Quarterly | 1 010.04 | 1 020.15 | 1 030.34 | 1 040.60 | 1 050.95 | 1 061.36 | | Monthly | 1 010.05 | 1 020.18 | 1 030.42 | 1 040.74 | 1 051.16 | 1 061.68 | | Daily | 1 010.05 | 1 020.20 | 1 030.45 | 1 040.81 | 1 051.27 | 1 061.83 | - (a) State the value of \$1 000 invested at 3% pa compounded monthly after one year. (1 mark) - (b) How much interest will be earned when \$1 000 is invested at 5% pa compounded every six months for one year? (1 mark) - (c) \$1 000 was invested at 4% pa for one year. If \$40.60 interest was earned, what was the compounding period? (1 mark) - (d) How much extra interest is earned by compounding the interest monthly instead of halfyearly when \$1 000 is invested at 6% pa for one year? (1 mark) - State the value, to the nearest dollar, of \$10 000 invested at 6% pa compounded monthly after one year. (2 marks) - (f) The twelfth term of the recursive rule $T_{n+1} = r \times T_n$ , $T_0 = a$ , would also be the answer to (e). State the values of a and r in this rule. (2 marks) See next page #### **APPLICATIONS UNITS 3 AND 4** 8 **CALCULATOR-FREE** #### Question 6 (8 marks) A company has a fleet of four mobile coffee trucks that it plans to send to four venues the following week. The table below shows the average weekly profit (in hundreds of dollars) made by each truck at these venues in the past. | | Venue 1 | Venue 2 | Venue 3 | Venue 4 | |---------|---------|---------|---------|---------| | Truck A | 50 | 65 | 55 | 65 | | Truck B | 45 | 55 | 40 | 55 | | Truck C | 35 | 50 | 65 | 70 | | Truck D | 40 | 50 | 45 | 55 | (a) Briefly explain why the Hungarian algorithm cannot be used with the numbers as shown in the table to determine the allocation of trucks to maximise the total profit. (1 mark) (b) Create a matrix that can be used with the Hungarian algorithm by subtracting all the numbers in the table from 70. (2 marks) (c) What do the numbers in the matrix in (b) show? (1 mark) | CAL | CIII | ΔΤ | OR | -FR | FF | |-----|------|----|----|-----|----| | | | | | | | **APPLICATIONS UNITS 3 AND 4** Show use of the Hungarian algorithm to determine the allocation of trucks to the different venues to maximise the profit, and state what this maximum profit is. **APPLICATIONS UNITS 3 AND 4** 10 **CALCULATOR-FREE** (8 marks) The completion times and immediate predecessors for all the tasks (A, B, C, D, E, F, G, H and J) that are involved in a project are listed here: - A (12 days), B (20 days) and C (19 days) have no predecessors - D (11 days) and G (24 days) can begin once A has been completed - F (8 days) can begin once B and D have been completed - E (9 days) and H (18 days) can begin once C has been completed - J (10 days) can begin once E and F have been completed - Display this information as a project network. (4 marks) - State the critical path and minimum completion time for this project. - (2 mark) Tasks G and H are delayed by x and y days respectively, where x and y are positive integers, but the minimum completion time and the unique critical path are unchanged. Determine the maximum value of x + y. (2 marks) | CAL | CI | II A | TOR | ED | | |-----|-----|------|-----|-----|--| | CAL | LUL | ILA | IUR | -FK | | **APPLICATIONS UNITS 3 AND 4** Additional working space Question number: © 2015 WA Exam Papers. Woodvale Secondary College has a non-exclusive licence to copy and communicate this paper for non-commercial, educational use within the school. No other copying, communication or use is permitted without the express written permission of WA Exam Papers. # **Woodvale Secondary College** # WA Exams Practice Paper B. 2016 #### Question/Answer Booklet | MATH | ΕN | ſΑ | TIC | cs | |-------|----|----|-----|----| | APPLI | C | T | 101 | NS | | UNITS | 3 | Al | ND | 4 | Section Calcula | 3 AND 4 | | If require place | | | ion adn<br>cation l | | | |------------------------|------------|------------------|--------------|------|---------------------|----------|--| | n Two:<br>ntor-assumed | | | <del> </del> | <br> | | <br>- No | | | Student Number: | In figures | | | | | | | | | In words | | | <br> | | | | | | Your name | - | | | | | | | lowed for this s | | ten minute | s | | | | | ## Time al Reading ti Working time for section: one hundred minutes # Materials required/recommended for this section To be provided by the supervisor This Question/Answer Booklet Formula Sheet (retained from Section One) #### To be provided by the candidate Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters Special items: drawing instruments, templates, notes on two unfolded sheets of A4 paper, and up to three calculators approved for use in the WACE examinations ## Important note to candidates No other items may be taken into the examination room. It is your responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor before reading any further. #### **APPLICATIONS UNITS 3 AND 4** 2 #### CALCULATOR-ASSUMED # Structure of this paper | Section | Number of<br>questions<br>available | Number of<br>questions to<br>be answered | Working<br>time<br>(minutes) | Marks<br>available | Percentage of exam | |------------------------------------|-------------------------------------|------------------------------------------|------------------------------|--------------------|--------------------| | Section One:<br>Calculator-free | 7 | 7 | 50 | 51 | 35 | | Section Two:<br>Calculator-assumed | 11 | 11 | 100 | 98 | 65 | | | | | Total | 149 | 100 | # Instructions to candidates - The rules for the conduct of examinations are detailed in the school handbook. Sitting this examination implies that you agree to abide by these rules. - Write your answers in this Question/Answer Booklet. - You must be careful to confine your response to the specific question asked and to follow any instructions that are specified to a particular question. - Spare pages are included at the end of this booklet. They can be used for planning your responses and/or as additional space if required to continue an answer. - Planning: If you use the spare pages for planning, indicate this clearly at the top of the - · Continuing an answer: If you need to use the space to continue an answer, indicate in the original answer space where the answer is continued, i.e. give the page number. Fill in the number of the question that you are continuing to answer at the top of the - Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked. - It is recommended that you do not use pencil, except in diagrams. - The Formula Sheet is not to be handed in with your Question/Answer Booklet. | CALCULATO | DR-ASSUMED | ) | 3 | APPL | APPLICATIONS U | | | |-------------------------------|-----------------------|-----------------|-----------------------|-----------------|----------------|----------------|--| | ection Two | : Calculator-a | ssumed | | | 6 | 5% (98 Mari | | | his section h<br>rovided. | nas <b>eleven (11</b> | ) questions. A | Answer <b>all</b> que | stions. Write y | | | | | Vorking time | for this section | n is 100 minut | es. | | | | | | luestion 8 | | | | | | (6 mark | | | he number o<br>ne table belor | of telephone ca<br>w. | alls each day t | o a particular i | number during | ı weekdays ar | | | | | | | Daily calls | | | | | | Week | Mon | Tue | Wed | Thu | Fri | Weekly<br>mean | | | 1 | 21 | 18 | 26 | 22 | 18 | A | | | 3 | 21 | 17 | 24 | 21 | 17 | 20 | | | 3 | 22 | 19 | 27 | 23 | B | 22 | | | ) Calcula | ite the values | 11 wild D (II | ano table. | | | (2 mark | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | | ) Determ | ine the seasor | nal index for V | Vednesday, co | rrect to two de | ecimal places. | (3 mark | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | See next page Deseasonalise the number of calls on Wednesday of Week 3, giving your answer correct (1 mark) to one decimal place. ## **APPLICATIONS UNITS 3 AND 4** ## CALCULATOR-ASSUMED Question 9 (12 marks) To be awarded a certificate of competence at the end of a photography course, participants sat a theory test out of 60 marks and a practical test out of 40 marks. The results of 18 students are shown on the graph below. - (a) Two other students sat the tests, one scoring 43 in the practical and 23 in the theory, and the other scoring 30 in the practical and 11 in the theory. Add these points to the graph. (2 marks) - (b) State the highest score recorded for the theory test. (1 mark) (1 mark) (c) How many students scored a mark greater than 45 in the practical test? The equation of the least squares line for the 20 data points is y = 0.54x - 1.05, where x is the theory mark and y is the practical mark. The correlation coefficient is 0.82. (d) Draw the least squares line on the graph. (2 marks) | CAL | CULATOR-ASSUMED | 5 APPLICATIONS UNITS 3 AND | 4 | APPL | ICATI | ONS UNITS 3 AND 4 | 6 | CALCULATOR- | ASSUMED | |-----|----------------------------------------------------|-----------------------------------------------------------------|---|---------------------------|------------------|-----------------------------------------------------------------------|-------------------------------|---------------------------|----------------------| | (e) | Calculate the coefficient of determinatio context. | n and interpret the value of the coefficient in this<br>(2 mark | ) | Quest<br>The va<br>bank o | alue o | 0 f an investment $n$ months after a calculated by the recursive rule | an initial amount of | A is deposited into a | (8 marks)<br>savings | | | | | | $T_n = (1$ | $+\frac{R}{100}$ | $T_{n-1}$ , $T_0 = A$ , where $R$ is the m | nonthly interest rate | as a percentage. | | | | | | | (a) | An in<br>0.4% | itial amount of \$1000 is deposite per month. | ed with a savings ba | nk offering an interest i | rate of | | | | | | | (i) | What is the value of $n$ after or | ne year? | | (1 mark) | | (f) | Predict the theory mark, to the nearest v | whole number, of a student who scored | | | | | | | | | | (i) 50 in the practical test. | (1 mari | ) | | (ii) | What is the value of the invest | ment after one year | , to the nearest cent? | (2 marks) | | | (ii) 22 in the practical test. | (1 mari | ) | | (iii) | How much interest has accum | ulated over the first | year? | (1 mark) | | (g) | Which, if any, of the predictions made in answer. | (e) do you consider to be unreliable? Explain you (2 marks | | (b) ( | Consi | der the recursive rule $T_n = 1.0025$ er investment after $n$ months. | $5T_{n-1}, \ T_0 = 3450$ , us | ed to calculate the valu | e of | | | | | | ( | (i) | What is the initial amount of the | e investment? | | (1 mark) | | | | | | ( | (ii) | What is the monthly interest rat | te as a percentage? | | (1 mark) | See next page See next page (iii) How much interest would accumulate over the first year of this investment? (2 marks) 7 **APPLICATIONS UNITS 3 AND 4** Question 11 (8 marks) A plant grew from a seed to a height of 120 cm in its first year. The growth of the plant in subsequent years is expected to be 60% of its growth in the previous year. - (a) Determine - (i) the growth of the plant during the second year. (1 mark) (ii) the height of the plant after two years. (1 mark) The growth of the plant during the $n^{th}$ year can be given by $T_{n+1}=0.6T_n$ , $T_1=120$ . (b) Complete the growth table below. (2 marks) | Year | 11 | 2 | 3 | 4 | 5 | |------------|-----|---|---|---|---| | rowth (cm) | 120 | | | | | | rowth (cm) | 120 | | | | | (c) Plot the annual growth of the plant on the axes below for the first five years. (2 marks) Growth (cm) (d) In which year is the growth of the tree first less than 1 cm? (1 mark) Describe height of the tree in the long-term. (1 mark) See next page **APPLICATIONS UNITS 3 AND 4** CALCULATOR-ASSUMED Question 12 (8 marks) An electrical supply has to be made to the 14 buildings on a new industrial site. The cost of establishing a direct electrical supply between various buildings is shown on the graph below, where the number on each edge represents the cost for that link, in thousands of dollars. - (a) Clearly indicate the minimal spanning tree on the graph above. (3 marks) - (b) Determine the minimum cost of establishing the electrical supply to the 14 buildings. (2 marks) **APPLICATIONS UNITS 3 AND 4** If the cost of the link between C and G could be decreased by \$3 000, explain what effect, if any, this would have on the solution in part (b). Justify your answer. (3 marks) A copy of the original graph is provided for your use, if required. 9 **APPLICATIONS UNITS 3 AND 4** 10 CALCULATOR-ASSUMED #### Question 13 (11 marks) Some of the quarterly profits (in thousands of dollars) for an export business over 16 consecutive quarters, together with some seasonal indices, are shown in the table below. | Year | Quarter | Time (t) | Profit (\$000's) | Seasonal indices | |------|---------|----------|------------------|------------------| | 2010 | 1 | 1 | 48 | 1.34 | | 2010 | 2 | 2 | 37 | 1.03 | | 2010 | 3 | 3 | 26 | Α | | 2010 | 4 | 4 | 32 | В | | 2011 | 1 | 5 | 44 | 1.34 | | 2011 | 2 | 6 | С | 1.07 | | 2011 | 3 | 7 | 22 | 0.67 | | 2011 | 4 | 8 | 30 | 0.92 | | 2012 | 1 | 9 | 36 | 1.40 | | 2012 | 2 | 10 | 25 | 0.97 | | 2012 | 3 | 11 | 15 | 0.58 | | 2012 | 4 | 12 | 27 | 1.05 | | 2013 | 1 | 13 | 33 | 1.36 | | 2013 | 2 | 14 | 25 | 1.03 | | 2013 | 3 | 15 | 16 | 0.66 | | 2013 | 4 | 16 | 23 | 0.95 | (a) Determine the seasonal indices A and B in the table above, rounding your answers to two decimal places. (3 marks) b) Given that the 4-point centred moving average associated with Quarter 4 of 2011 is 30, determine the value of C in the table above. (2 marks) The seasonal index for the third quarter is 0.66 and for the fourth quarter is 0.95. (c) Calculate the seasonal index for the first quarter of the year. (1 mark) **APPLICATIONS UNITS 3 AND 4** (d) Calculate the deseasonalised profit for the fourth quarter of 2012. (2 marks) (e) The equation of the least-squares regression line fitted to the deseasonalised profit figures (p in 000's) against time (t) is p = 38.36 - 1.0127t. Forecast the expected profit in Quarter 3, 2014 if trends in the above data continue. See next page # **APPLICATIONS UNITS 3 AND 4** 12 # CALCULATOR-ASSUMED ## Question 14 (10 marks) The graph below shows the average number of cigarettes smoked per week by smokers aged 18 to 24 for the years 1980 to 2010. The table below shows the same data for 1989 to 2010. | Year, x | 1989 | 1992 | 1995 | 1998 | 2001 | 2004 | 2007 | 2010 | |-----------|------|------|------|------|------|------|------|------| | Number, y | 18.6 | 16.6 | 14.8 | 14.1 | 12.3 | 11.2 | 11.6 | 11 | (a) For the data in the table, determine (i) the correlation coefficient $r_{n}$ . (1 mark) (ii) the least squares regression model, giving coefficients rounded to two decimal places. (2 marks) (b) Describe how your answers in (a) would be affected if all the data shown in the graph was used rather than that displayed in the table. (2 marks) (d) Use the residual plot above to comment on the appropriateness of fitting a linear model to the data in the table. (2 marks) **APPLICATIONS UNITS 3 AND 4** 14 CALCULATOR-ASSUMED # **Question 15** (8 marks) The maximum numbers of shipping containers that can be moved between various points in a distribution network each day are shown in the weighted digraph below. (a) State the source and the sink of this digraph. (1 mark) (b) What is the maximum number of containers that can be transported from the source to the sink each day? Show systematic working to allow your solution to be checked. (4 marks) (c) One day, a shortage of drivers meant that the number of containers which could be sent from A to D was halved. What effect, if any, would this have on the maximum number of containers that can be transported each day? Justify your answer. (3 marks) 15 **APPLICATIONS UNITS 3 AND 4** ## **Question 16** (8 marks) (1 mark) A young person has borrowed \$7 500 to purchase a car and is making repayments of \$660 at the end of each month on the loan, with interest charged monthly. The spreadsheet below shows the balance and interest of the loan for the first three months. | Month | Balance at start of month (\$) | Interest for month (\$) | |-------|--------------------------------|-------------------------| | 1 | 7 500.00 | 52.50 | | 2 | 6 892.50 | 48.25 | | 3 | 6 280.75 | 43.97 | | (a) | Use information from the table to show that the | annual interest rate on the loan is 8.4% | |-----|-------------------------------------------------|------------------------------------------| | | per annum. | (2 marks) | | (b) Determine the balance at the start of month 4, and the interest for this month. | (2 marks) | |-------------------------------------------------------------------------------------|-----------| |-------------------------------------------------------------------------------------|-----------| | (c) | Write a recursive rule to determine the balance at the start of each month. | (2 marks | |-----|-----------------------------------------------------------------------------|------------| | , , | the balance and balance at the start of cach month. | 12 IIIdiks | - (d) The loan is fully repaid by the end of month 12. Determine, to the nearest dollar, - i) the amount of the 12<sup>th</sup> (last) repayment. - (ii) the total amount of interest paid over the twelve months. (1 mark) See next page **APPLICATIONS UNITS 3 AND 4** 16 CALCULATOR-ASSUMED #### Question 17 (10 marks) The table and graph below show the number of people employed in the accommodation and food services industry in Australia from February 2001 to November 2004. | Year | Quarter | Time (T) | People (1000's) | Annual index | |------|---------|----------|-----------------|--------------| | 2001 | Feb | 1 | 630.4 | 1.007 | | 2001 | May | 2 | 625.0 | 0.999 | | 2001 | Aug | 3 | 622.3 | 0.994 | | 2001 | Nov | 4 | 625.7 | 1.000 | | 2002 | Feb | 5 | 649.2 | 1.026 | | 2002 | May | 6 | 641.7 | 1.014 | | 2002 | Aug | 7 | 603.2 | 0.953 | | 2002 | Nov | 8 | 637.0 | 1.007 | | 2003 | Feb | 9 | 625.7 | 0.974 | | 2003 | May | 10 | 647.9 | 1.009 | | 2003 | Aug | 11 | 631.8 | 0.984 | | 2003 | Nov | 12 | 664.1 | 1.034 | | 2004 | Feb | 13 | 649.7 | 0.993 | | 2004 | May | 14 | 647.5 | 0.989 | | 2004 | Aug | 15 | 642.6 | 0.982 | | 2004 | Nov | 16 | 677.9 | 1.036 | # People (1000's) - (a) How do the data points for August support the use of a four-point centred moving average to smooth the entire data set? (1 mark) - (b) Calculate the four-point centred moving average for August 2001. (2 marks) 17 # **APPLICATIONS UNITS 3 AND 4** The seasonal indices for three quarters are shown in the table below. | Day | Feb | May | Aug | Nov | |----------------|-------|-------|-------|-----| | Seasonal index | 1.000 | 1.003 | 0.978 | | (c) Determine the seasonal index for November. (1 mark) The following table shows the deseasonalised values of the number of people, P. | | 2001 | | | 2002 | | | 2003 | | | | 2004 | | | | | | |-----|------|-----|-----|------|-----|-----|------|-----|-----|-----|------|-----|-----|-----|-----|-----| | Qtr | F | М | Α | N | F | М | Α | N | F | М | А | N | F | М | А | N | | T | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | P | 630 | 623 | 636 | 614 | 649 | 640 | 617 | 625 | 626 | 646 | 646 | 652 | 650 | 646 | 657 | 665 | - (d) Show how the deseasonalised value of 657 for P in August 2004 was calculated. (1 mark) - (e) Use the table of deseasonalised values to determine the equation of the least-squares regression line that can be used to predict P from time T. (2 marks) - (f) Forecast the expected number of people employed in the accommodation and food services industry in Australia in August 2006 to the nearest 1 000, and comment on the reliability of your forecast. (3 marks) See next page **APPLICATIONS UNITS 3 AND 4** 18 CALCULATOR-ASSUMED | ٦. | est | 2 | 10 | | |-----|------|----|----|--| | JI. | iest | on | 10 | | (9 marks) An annuity paying a monthly sum of \$1 500 is set up with an initial sum of \$400 000 and interest of 5.4% per annum compounded monthly. - (a) The balance of the loan at the start of month n is given by the recurrence relation $A_{n+1} = rA_n d$ , $A_1 = 400000$ . State the values of r and d. (2 marks) - Determine the value of the annuity after twelve months and comment on what this figure indicates. (2 marks) - (c) Determine, to the nearest dollar, the monthly sum that should be withdrawn from the annuity if - (i) the annuity is to last for 20 years. (1 mark) (ii) the annuity is to be a perpetuity. (1 mark) (d) If the interest rate of 5.4% was halved after one year, calculate the total interest accrued by the annuity over the first two years. (3 marks) End of questions | CAL | CIII | ATO | R-A | 221 | IMED | |-----|------|-----|-----|-----|------| | | | | | | | **APPLICATIONS UNITS 3 AND 4** Additional working space Question number: \_\_\_\_\_ © 2015 WA Exam Papers. Woodvale Secondary College has a non-exclusive licence to copy and communicate this paper for non-commercial, educational use within the school. No other copying, communication or use is permitted without the express written permission of WA Exam Papers.